3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes

نویسندگان

  • Nripun Sredar
  • Kevin M. Ivers
  • Hope M. Queener
  • George Zouridakis
  • Jason Porter
چکیده

En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (-0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo examination of lamina cribrosa microarchitecture and optic nerve head morphology in normal human eyes with age

In vivo examination of lamina cribrosa microarchitecture and optic nerve head morphology in normal human eyes with age Purpose: Age is a risk factor for the development of glaucoma. Several studies suggest that normal aging could increase the susceptibility of the optic nerve head (ONH) to glaucomatous damage. We examined whether differences exist in lamina cribrosa and ONH structure in vivo be...

متن کامل

In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography.

PURPOSE The lamina cribrosa (LC) is a prime location of glaucomatous damage. The purpose of this study was to compare LC 3-dimensional micro-architecture between healthy and glaucomatous eyes in vivo by using optical coherence tomography (OCT). METHODS Sixty-eight eyes (19 healthy and 49 glaucomatous) from 47 subjects were scanned in a 3.5 × 3.5 × 3.64-mm volume (400 × 400 × 896 pixels) at th...

متن کامل

Morphometry of the human lamina cribrosa surface.

The lamina cribrosa is a sieve-like perforation in the posterior part of the sclera, that allows passage of the retinal ganglion cell axons and central retinal vessels and preserves a pressure gradient between the intraocular and extraocular space. It has been termed the primary site of glaucomatous damage to the optic nerve. Using electron microscopy, the authors morphometrically evaluated the...

متن کامل

In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma

The lamina cribrosa likely plays an important role in retinal ganglion cell axon injury in glaucoma. We sought to (1) better understand optic nerve head (ONH) structure and anterior lamina cribrosa surface (ALCS) microarchitecture between fellow eyes of living, normal non-human primates and (2) characterize the time-course of in vivo structural changes in the ONH, ALCS microarchitecture, and re...

متن کامل

Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.

We demonstrate the repeatability of lamina cribrosa (LC) microarchitecture for in vivo 3D optical coherence tomography (OCT) scans of healthy, glaucoma suspects, and glaucomatous eyes. Eyes underwent two scans using a prototype adaptive optics spectral domain OCT (AO-SDOCT) device from which LC microarchitecture was semi-automatically segmented. LC segmentations were used to quantify pore and b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013